DeepMind团队基于大量的天气预报以及历史发电数据训练其神经网络模型,并建立了提前36小时预测风力发电的模型。基于这些预测数据,DeepMind团队可以提前一天告知电网未来每小时电力的输出,从而可以更高效的保证电网的稳定。虽然这一算法还没改进到最优的程度,但目前已经开始显著的帮助了风力发电厂提高自身的收益。与最基础的运作方式相比,通过加入基于机器学习的预测,风电场的收益提高了20%。

图1,DeepMind团队提前36小时预测值与真实值对比
我们无法消除风的变化,因此无法使风力发电变得稳定,但DeepMind目前的研究结果表明,可以使用机器学习来预测风力发电,从而提高风电的价值。

图2,与未采用机器学习的风电场(浅色矩形)相比,成功将风力能源价值提高将近 20%
标签:行业新闻